DocumentCode :
107825
Title :
A Gauss–Newton Method for the Synthesis of Periodic Outputs With Central Pattern Generators
Author :
Consolini, Luca ; Lini, Gabriele
Author_Institution :
Dipt. di Ing. dell´Inf., Univ. of Parma, Parma, Italy
Volume :
25
Issue :
7
fYear :
2014
fDate :
Jul-14
Firstpage :
1394
Lastpage :
1400
Abstract :
It is assumed that a central pattern generator possesses an exponentially stable limit cycle, which originates a periodic output signal. We propose a method based on a Gauss-Newton iteration to determine the values of the neural coupling parameters that allows to approximate a given reference output signal. We present two applications. The first is a ring network of Morris-Lecar neurons, where the output of the system is the sum of the membrane potential of all neurons. The second is a network of six neural cells for the generation of the leg movements of a hexapod.
Keywords :
Newton method; neural chips; signal processing; Gauss-Newton iteration; Gauss-Newton method; Morris-Lecar neurons; central pattern generators; exponentially stable limit cycle; hexapod leg movements; neural cells; neural coupling parameters; neuron membrane potential; periodic output signal; periodic outputs synthesis; ring network; Approximation methods; Biomembranes; Learning systems; Legged locomotion; Limit-cycles; Neurons; Vectors; Biological neuron models; Gauss--Newton optimization; Gauss??Newton optimization; central pattern generators (CPGs); signal generation; signal generation.;
fLanguage :
English
Journal_Title :
Neural Networks and Learning Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
2162-237X
Type :
jour
DOI :
10.1109/TNNLS.2013.2288260
Filename :
6674088
Link To Document :
بازگشت