DocumentCode :
1078687
Title :
Bounds for Codes in Products of Spaces, Grassmann, and Stiefel Manifolds
Author :
Bachoc, Christine ; Ben-Haim, Yael ; Litsyn, Simon
Author_Institution :
Lab. A2X, Univ. Bordeaux I, Talence
Volume :
54
Issue :
3
fYear :
2008
fDate :
3/1/2008 12:00:00 AM
Firstpage :
1024
Lastpage :
1035
Abstract :
Upper bounds are derived for codes in Stiefel and Grassmann manifolds with given minimum chordal distance. They stem from upper bounds for codes in the product of unit spheres and projective spaces. The new bounds are asymptotically better than the previously known ones.
Keywords :
codes; linear programming; Grassmann manifold; Stiefel manifold; codes; linear programming; minimum chordal distance; Code standards; Eigenvalues and eigenfunctions; Information theory; Linear programming; MIMO; Polynomials; Receiving antennas; Upper bound; Vectors; Coding theory; Grassman manifold; Stiefel manifold; minimum distance; multiple-input multiple output (MIMO); space–time codes; spherical codes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2007.915916
Filename :
4455728
Link To Document :
بازگشت