DocumentCode :
1079746
Title :
Effect of thickness on silicon solar cell efficiency
Author :
Sah, Chih-Tang ; Yamakawa, K. Alan ; Lutwack, Ralph
Author_Institution :
University of Illinois, Urbana, IL
Volume :
29
Issue :
5
fYear :
1982
fDate :
5/1/1982 12:00:00 AM
Firstpage :
903
Lastpage :
908
Abstract :
Semiconductor material cost is one of the factors which determines the performance-cost ratio and economical feasibility of silicon solar cells for terrestrial power generation. Decreasing the cell thickness would lower the silicon material cost. The energy conversion efficiency of a back-surface field solar cell will have a peak as the silicon film thickness is reduced due to two opposing factors: 1) the open-circuit voltage increases and 2) the short-circuit current decreases with decreasing cell thickness. A computer-aided-design study on the dependence of this efficiency peak on the concentrations of the recombination and dopant impurities is presented in this paper. The illuminated current-voltage characteristics of over 100 cell designs were obtained using the transmission line circuit model to numerically solve the Shockley equations. Using an AM1 efficiency of 17 percent as a target value, which is the highest encapsulated silicon cell efficiency used in the Block IV modules of the Low-Cost Solar Array Project, it is shown that the efficiency versus thickness dependence has a broad maximum which varies less than 1 percent over more than a three-to-one range of cell thickness from 30 to 100 µm. Optical reflecting back surface will give only a slight improvement of AM1 efficiency, about 0.7 percent, in this thickness range. The sensitive dependence of efficiency on patchiness across the back-surface field low-high junction in thin cells is noted.
Keywords :
Costs; Energy conversion; Photovoltaic cells; Power generation economics; Radiative recombination; Semiconductor films; Semiconductor materials; Silicon; Solar power generation; Voltage;
fLanguage :
English
Journal_Title :
Electron Devices, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9383
Type :
jour
DOI :
10.1109/T-ED.1982.20797
Filename :
1482294
Link To Document :
بازگشت