Different materials and different types of detectors are used for optical data communication in the wavelength range of

µm

µm. In this paper the behavior of p-n diodes, Mn and Mp Schottky diodes is evaluated as well as that of bipolar transistors, n-p-n and p-n-p, and of photoconductive detectors using n-type or p-type material. The different behavior of lateral and coaxial versions is shown taking into account contact and surface recombination. The gain, the bandwidth, the gain bandwidth product, and the rise time of all these types of fast detectors are given in terms of material and technological data, including the discussion of the different rise and fall times of some detector versions. Finally, a theoretical comparison is made between the detectors showing their different behavior and ultimate performance limit. For practical GaAs planar devices as a photoconductive detector, a p-n diode, a heterojunction n-p-n and a lateral n-p-n transistor, a Mn Schottky diode, and a totally depleted MnM structure (symmetrical Mott barrier) experimental data are given. They verify the theoretical prediction that with all types of detectors rise times of <100 ps can be achieved.