DocumentCode :
1080964
Title :
Tunable alexandrite lasers
Author :
Walling, John C. ; Peterson, Otis G. ; Jenssen, Hans P. ; Morris, Robert C. ; O´Dell, E. Wayne
Author_Institution :
Corporate Research Center, Allied Chemical Corporation, Morristown, NJ, USA
Volume :
16
Issue :
12
fYear :
1980
fDate :
12/1/1980 12:00:00 AM
Firstpage :
1302
Lastpage :
1315
Abstract :
Wavelength tunable laser operation has been obtained from the solid-state crystal alexandrite (BeAl2O4:Cr3+) over the continuous range from 701 to 818 nm. The tunable emission was observed at room temperature and above in a homogeneously broadened, vibronic, four-level mode of laser action. In this mode the laser gain cross section increases from 7 \\times 10^{-21} cm2at 300K to 2 \\times 10^{-20} cm2at 475K, which results in improved laser performance at elevated temperatures. Efficient 2.5 percent, low-threshold (10 J) operation has been obtained with xenon-flashlamp excitation of the 6 mm diameter × 76 mm length laser rods. Output pulses of greater than 5 J and average power outputs of 35 W have been demonstrated, limited by the available power supply. The emission is strongly polarized E\\parallel b , with a gain that is 10 times that in the alternate polarization. The 262 μs, room-temperature fluorescence lifetime permits effective energy storage and Q -switched operation. Tunable Q -switched pulses as large as 500 mJ have been obtained with pulsewidths ranging between 33 and 200 ns depending on the laser gain. Laser action has also been demonstrated on the high-gain ( 3 \\times 10^{-19} cm2emission cross section) R line at 680.4 nm and is also polarized E\\parallel b . This three-level mode is analogous to the lasing in ruby except that the stimulated emission cross section in alexandrite is ten times larger than for ruby.
Keywords :
Infrared lasers; Laser tuning; Q-switched lasers; Solid lasers; Chromium; Laser modes; Optical pulses; Performance gain; Polarization; Pulsed power supplies; Solid lasers; Solid state circuits; Temperature; Tunable circuits and devices;
fLanguage :
English
Journal_Title :
Quantum Electronics, IEEE Journal of
Publisher :
ieee
ISSN :
0018-9197
Type :
jour
DOI :
10.1109/JQE.1980.1070430
Filename :
1070430
Link To Document :
بازگشت