• DocumentCode
    1081699
  • Title

    Ruby masers for maximum G/Top

  • Author

    Shell, James S. ; Clauss, Robert C. ; Petty, Samuel M. ; Glass, Gary W. ; Fiore, Mark Steven ; Kovatch, Jason Jess ; Loreman, Jan Richard ; Neff, Dudley E. ; Quinn, Rex B. ; Trowbridge, David L.

  • Author_Institution
    Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA
  • Volume
    82
  • Issue
    5
  • fYear
    1994
  • fDate
    5/1/1994 12:00:00 AM
  • Firstpage
    796
  • Lastpage
    810
  • Abstract
    The Deep-Space Network (DSN) includes world-wide networks of 26-, 34- and 70-m antennas in Australia, Spain, and the USA. Ruby masers are used on the 34and 70-m antennas to maximize the system operating noise temperature and thereby maximize the DSN receiving system figure of merit, antenna gain divided by system operating noise temperature. These systems are used for deep-space telecommunications, solar system radar, and radio astronomy. Cavity, traveling-wave, and reflected-wave maser designs and performance characteristics from 960 MHz to 34 GHz are summarized. Effective noise temperatures of ruby masers are addressed with emphasis on a 33.68-GHz maser where quantum noise is a major source of noise
  • Keywords
    antenna feeders; masers; microwave antennas; preamplifiers; reflector antennas; ruby; space communication links; 960 to 34 MHz; DSN; Deep-Space Network; antenna gain; cavity maser; deep-space telecommunications; designs; maximum G/Top; performance; quantum noise; radio astronomy; receiving system figure of merit; reflected-wave maser; ruby masers; solar system radar; system operating noise temperature; traveling-wave maser; Australia; Frequency; Masers; Noise figure; Radio astronomy; Receiving antennas; Signal to noise ratio; Solar system; Space vehicles; Temperature;
  • fLanguage
    English
  • Journal_Title
    Proceedings of the IEEE
  • Publisher
    ieee
  • ISSN
    0018-9219
  • Type

    jour

  • DOI
    10.1109/5.284747
  • Filename
    284747