Title :
Handling Movement Epenthesis and Hand Segmentation Ambiguities in Continuous Sign Language Recognition Using Nested Dynamic Programming
Author :
Yang, Ruiduo ; Sarkar, Sudeep ; Loeding, Barbara
Author_Institution :
Dept. of Comput. Sci. & Eng., Univ. of South Florida, Tampa, FL, USA
fDate :
3/1/2010 12:00:00 AM
Abstract :
We consider two crucial problems in continuous sign language recognition from unaided video sequences. At the sentence level, we consider the movement epenthesis (me) problem and at the feature level, we consider the problem of hand segmentation and grouping. We construct a framework that can handle both of these problems based on an enhanced, nested version of the dynamic programming approach. To address movement epenthesis, a dynamic programming (DP) process employs a virtual me option that does not need explicit models. We call this the enhanced level building (eLB) algorithm. This formulation also allows the incorporation of grammar models. Nested within this eLB is another DP that handles the problem of selecting among multiple hand candidates. We demonstrate our ideas on four American Sign Language data sets with simple background, with the signer wearing short sleeves, with complex background, and across signers. We compared the performance with conditional random fields (CRF) and latent dynamic-CRF-based approaches. The experiments show more than 40 percent improvement over CRF or LDCRF approaches in terms of the frame labeling rate. We show the flexibility of our approach when handling a changing context. We also find a 70 percent improvement in sign recognition rate over the unenhanced DP matching algorithm that does not accommodate the me effect.
Keywords :
dynamic programming; gesture recognition; grammars; image motion analysis; image segmentation; image sequences; random processes; video signal processing; conditional random fields; dynamic programming; eLB algorithm; enhanced level building; grammar model; hand grouping; hand segmentation; latent dynamic-CRF; movement epenthesis; sentence level; sign language recognition; video sequence; Buildings; Context modeling; Dynamic programming; Handicapped aids; Hidden Markov models; Labeling; Shape; Speech recognition; Training data; Video sequences; Sign language; continuous gesture; level building.; movement epenthesis; segmentation; Algorithms; Databases, Factual; Hand; Humans; Image Processing, Computer-Assisted; Movement; Normal Distribution; Pattern Recognition, Automated; Sign Language;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
DOI :
10.1109/TPAMI.2009.26