• DocumentCode
    108317
  • Title

    Interpolated DFT for \\sin^{\\alpha }(x) Windows

  • Author

    Duda, K. ; Barczentewicz, Szymon

  • Author_Institution
    Dept. of Meas. & Electron., AGH Univ. of Sci. & Technol., Kraków, Poland
  • Volume
    63
  • Issue
    4
  • fYear
    2014
  • fDate
    Apr-14
  • Firstpage
    754
  • Lastpage
    760
  • Abstract
    This paper describes interpolated discrete Fourier transform (IpDFT) for parameter estimation of sinusoidal and damped sinusoidal signals analyzed with a sinα(x) window. For α = 0,2,4,...sinα(x) windows are Rife-Vincent class I (RVI) windows, for which IpDFT algorithms are known. We present a new IpDFTs for α = 1,3,5,.... The bias-variance trade-off of the proposed IpDFT fits between results offered by RVI windows, e.g., for α = 1, we get higher noise immunity than Hann (RVI order 1, α = 2) window and lower bias than rectangular (RVI order 0, α = 0) window.
  • Keywords
    discrete Fourier transforms; interpolation; parameter estimation; signal processing; IpDFT algorithms; Rife-Vincent class; damped sinusoidal signals; interpolated DFT; interpolated discrete Fourier transform; noise immunity; parameter estimation; sinα(x) Windows; Damping; Discrete Fourier transforms; Estimation; Frequency estimation; Frequency modulation; Noise; Systematics; Discrete Fourier transform (DFT); frequency and damping estimation; frequency domain measurements; interpolated DFT; signal processing; windowing;
  • fLanguage
    English
  • Journal_Title
    Instrumentation and Measurement, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9456
  • Type

    jour

  • DOI
    10.1109/TIM.2013.2285795
  • Filename
    6746005