• DocumentCode
    108585
  • Title

    Remote Area Power Supply System: An Integrated Control Approach Based on Active Power Balance

  • Author

    Mendis, Nishad ; Muttaqi, Kashem Mohammad ; Perera, Sarath ; Uddin, Mohammad Nasir

  • Author_Institution
    Electr., Comput. & Telecommun. Eng, Univ. of Wollongong, Wollongong, NSW, Australia
  • Volume
    21
  • Issue
    2
  • fYear
    2015
  • fDate
    March-April 2015
  • Firstpage
    63
  • Lastpage
    76
  • Abstract
    This article presents a novel control strategy for a high-penetration, wind-based hybrid remote area power supply (RAPS) system. The proposed RAPS system consists of a permanent magnet synchronous generator (PMSG)-based variable-speed wind turbine and a battery energy storage system (ESS) with a dump load for dc bus voltage control and a diesel generator as a backup supply. An integrated control approach based on the active power balance of the proposed RAPS system has been proposed and developed to regulate the voltage and frequency within an acceptable bandwidth. The proposed integrated control algorithm is implemented by developing a controller for the individual system components in the RAPS system, including the wind energy conversion system, the diesel generator, the battery storage system, and the dump load, while coordinating their response to achieve optimal operation. The optimal operation for the proposed RAPS system is realized by operating the wind turbine generator (WTG) at its maximum power extraction mode while restricting the operation of the diesel generating system at low-load conditions. In addition to the detailed model, which mainly comprises nonlinear high-order characteristics of each system component, a linearized model of the RAPS system is presented to compare the active power sharing among the system components. Laboratory-based experimental tests have been conducted to validate the coordinated approach, and the results are presented in this article.
  • Keywords
    battery storage plants; diesel-electric generators; electric current control; frequency control; power control; power generation control; synchronous generators; turbogenerators; voltage control; wind power plants; wind turbines; BESS; DC bus voltage control; PMSG; RAPS system; active power balance; active power sharing; battery energy storage system; diesel generating system; frequency regulation; high-penetration wind-based hybrid remote area power supply system; integrated control approach; linearized model; maximum power extraction mode; nonlinear high-order characteristics; permanent magnet synchronous generator; variable-speed wind turbine generator; voltage regulation; wind energy conversion system; Batteries; Generators; Mathematical model; Reactive power; Voltage control; Wind power generation; Wind turbines;
  • fLanguage
    English
  • Journal_Title
    Industry Applications Magazine, IEEE
  • Publisher
    ieee
  • ISSN
    1077-2618
  • Type

    jour

  • DOI
    10.1109/MIAS.2014.2345817
  • Filename
    6996099