• DocumentCode
    1086149
  • Title

    Generation of matrices for determining minimum distance and decoding of algebraic-geometric codes

  • Author

    Shen, Ba-Zhong ; Tzeng, Kenneth K.

  • Author_Institution
    Dept. of Electr. Eng. & Comput. Sci., Lehigh Univ., Bethlehem, PA, USA
  • Volume
    41
  • Issue
    6
  • fYear
    1995
  • fDate
    11/1/1995 12:00:00 AM
  • Firstpage
    1703
  • Lastpage
    1708
  • Abstract
    Newton´s identities have played a significant role in decoding and minimum distance determination of cyclic and BCH codes. The present paper carries the notion over from cyclic codes to algebraic-geometric (AG) codes and introduces Newton´s identities for AG codes, also for the purpose of minimum distance determination and decoding
  • Keywords
    Newton method; algebraic geometric codes; decoding; matrix algebra; Newton´s identities; algebraic-geometric codes; decoding; matrices; minimum distance; Conferences; Cost accounting; Decoding; Galois fields; Information theory; Voting;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/18.476243
  • Filename
    476243