Title :
Analysis of linear prediction, coding, and spectral estimation from subbands
Author :
Rao, Sudhakar ; Pearlman, Wiliam A.
Author_Institution :
Silicon Graphics Comput. Syst., Mountain View, CA, USA
fDate :
7/1/1996 12:00:00 AM
Abstract :
Linear prediction schemes make a prediction xˆi of a data sample xi using p previous samples. It has been shown by Woods and O´Neil (1986) as well as Pearlman (1991) that as the order of prediction p→∞, there is no gain to be obtained by coding subband samples. This paper deals with the less well understood theory of finite-order prediction and optimal coding from subbands which are generated by ideal (brickwall) filtering of a stationary Gaussian source. We first prove that pth-order prediction from subbands is superior to pth-order prediction in the fullband, when p is finite. This fact adduces that optimal vector p-tuple coding in the subbands is shown to offer quantifiable gains over optimal fullband p-tuple coding, again when p is finite. The properties of subband spectra are analyzed using the spectral flatness measure. These results are used to prove that subband DPCM provides a coding gain over fullband DPCM, for finite orders of prediction. In addition, the proofs provide means of quantifying the subband advantages in linear prediction, optimal coding, and DPCM coding in the form of gain formulas. Subband decomposition of a source is shown to result in a whitening of the composite subband spectrum. This implies that, for any stationary source, a pth-order prediction error filter (PEF) can be found that is better than the pth-order PEF obtained by solving the Yule-Walker equations resulting from the fullband data. We demonstrate the existence of such a “super-optimal” PEF and provide algorithmic approaches to obtaining this PEF. The equivalence of linear prediction and AR spectral estimation is then exploited to show theoretically, and with simulations, that AR spectral estimation from subbands offers a gain over fullband AR spectral estimation
Keywords :
Gaussian processes; autoregressive processes; band-pass filters; differential pulse code modulation; entropy; estimation theory; filtering theory; linear predictive coding; source coding; spectral analysis; AR spectral estimation; Yule-Walker equations; algorithmic approaches; brickwall; coding gain; composite subband spectrum; entropy reduction; filtering; finite-order prediction; linear prediction; optimal coding; optimal fullband p-tuple coding; optimal vector p-tuple coding; prediction error filter; spectral estimation; spectral flatness measure; stationary Gaussian source; stationary source; subband DPCM; subband decomposition; subbands; Entropy; Equations; Filtering theory; Filters; Gain measurement; Information analysis; Modeling; Predictive models; Spectral analysis; Time frequency analysis;
Journal_Title :
Information Theory, IEEE Transactions on