Title :
Remote Observation of the Spatial Variability of Surface Waves Interacting With an Estuarine Outflow
Author :
Haus, Brian K. ; Ramos, Rafael J. ; Graber, Hans C. ; Shay, Lynn K. ; Hallock, Zachariah R.
Author_Institution :
Rosenstiel Sch. of Marine & Atmos. Sci., Miami Univ., FL
Abstract :
This paper explores the application of phased-array high-frequency (HF) radars to identify locations of enhanced local waveheights. Measurements of the near-surface current velocities and waveheights were obtained from HF radars deployed near the mouth of the Chesapeake Bay in the fall of 1997. The radar-derived near-surface velocities were compared with the upper bin (2-m depth) of four upward-looking acoustic Doppler current profilers (ADCPs). The slopes of the linear correlations were close to one and the root-mean-square (rms) differences were similar to previous studies. Significant waveheight (Hs) estimates from both radars were compared with a laser height gauge. The largest differences were observed during low winds due to overestimates at one of the radar stations and during storms when the laser measurement failed. Further analysis focused on the HF radar results from the more reliable of the two sites. The rms difference between this radar and the in situ sensor was 0.29 m. Synoptic observations of Hs over the Chesapeake Bay revealed regions of current-induced wave shoaling and refraction. Hs over the estuarine outflow increased between 19-50% relative to the incident Hs in light onshore winds (~5 m/s). In stronger winds (>10 m/s), Hs also increased by up to 25% when there was a tidal outflow in the surface layer, although the near-surface currents were responding to both the wind and the ebbing tide. Hs was not enhanced when the outflow was below a thicker layer (>5 m) of wind-forced onshore flow
Keywords :
ocean waves; oceanographic techniques; phased array radar; remote sensing by radar; Chesapeake Bay; acoustic Doppler current profilers; current-induced wave refraction; current-induced wave shoaling; estuarine outflow; laser height gauge; near-surface current velocity measurements; phased-array HF radars; phased-array high-frequency radars; root-mean-square differences; spatial variability; surface waves; waveheight measurements; Acoustic measurements; Current measurement; Doppler radar; Hafnium; Laser radar; Mouth; Radar applications; Radar measurements; Surface waves; Velocity measurement; Coastal currents; high-frequency (HF) radar; shoaling; wave refraction;
Journal_Title :
Oceanic Engineering, IEEE Journal of
DOI :
10.1109/JOE.2006.886240