• DocumentCode
    1093201
  • Title

    A recurrence relation for the product of the nonzero eigenvalues of singular symmetric Toeplitz matrices

  • Author

    Laroche, Jean

  • Author_Institution
    Dept. Signal, Telecom Paris, Paris, France
  • Volume
    42
  • Issue
    6
  • fYear
    1994
  • fDate
    6/1/1994 12:00:00 AM
  • Firstpage
    1563
  • Lastpage
    1564
  • Abstract
    The article presents an extension of a well-known recurrence relation for Toeplitz symmetric matrices to the case of incomplete rank matrices. It is shown that the product of the nonzero eigenvalues of the matrix of order p+1 can be obtained from the product of the non-zero eigenvalues of the matrix of order p, and the so-called minimum-norm prediction vector introduced by Kumaresan and Tufts (1982) in the context of parameter estimation
  • Keywords
    determinants; eigenvalues and eigenfunctions; matrix algebra; parameter estimation; determinants; incomplete rank matrices; minimum-norm prediction vector; nonzero eigenvalues product; parameter estimation; recurrence relation; singular symmetric Toeplitz matrices; Autocorrelation; Eigenvalues and eigenfunctions; Parameter estimation; Polynomials; Symmetric matrices; Vectors;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/78.286977
  • Filename
    286977