DocumentCode :
1093663
Title :
The generalized discrete Fourier transform in rings of algebraic integers
Author :
Dubois, Eric ; Venetsanopoulos, Anastasios
Author_Institution :
INRS-Telecommunications, Verdun, Quebec, Canada
Volume :
28
Issue :
2
fYear :
1980
fDate :
4/1/1980 12:00:00 AM
Firstpage :
169
Lastpage :
175
Abstract :
Conditions are presented for a transform of the DFT structure, defined in a ring of residues of a ring of algebraic integers, to map cyclic convolution isomorphically into a pointwise product. The conditions are used to verify that a number of potentially useful transforms (which require no general multiplications) satisfy this property. In particular, transforms defined in residue rings of the Gaussian integers, the Eisenstein integers, and a biquadratic domain are studied.
Keywords :
Acoustic signal processing; Convolution; Councils; Discrete Fourier transforms; Discrete transforms; Fourier transforms; Helium; Modules (abstract algebra); Speech processing;
fLanguage :
English
Journal_Title :
Acoustics, Speech and Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
0096-3518
Type :
jour
DOI :
10.1109/TASSP.1980.1163370
Filename :
1163370
Link To Document :
بازگشت