Title :
On parameter identifiability of ARMA models of non-Gaussian signals via cumulant spectrum matching
Author :
Tugnait, Jitendra K.
Author_Institution :
Dept. of Electr. Eng., Auburn Univ., AL, USA
fDate :
12/1/1995 12:00:00 AM
Abstract :
Considers the problem of estimating the parameters of a stable (stationary), scalar ARMA (p,q) signal model driven by an i.i.d. non-Gaussian sequence. The driving noise sequence is not observed. The signal is allowed to be nonminimum phase and/or noncausal (i.e., poles and zeros may lie both inside as well as outside the unit circle). The author addresses the problem of parameter identifiability given the higher order cumulant spectrum of the signal on a finite set of polyspectral frequencies. The sufficient set of polyspectral frequencies required to achieve parameter identifiability is the least “rigid” to date
Keywords :
autoregressive moving average processes; higher order statistics; parameter estimation; poles and zeros; sequences; spectral analysis; ARMA models; cumulant spectrum matching; driving noise sequence; estimation; iid nonGaussian sequence; nonGaussian signals; noncausal signal; nonminimum phase signal; parameter identifiability; polyspectral frequencies; signal model; Autoregressive processes; Digital communication; Digital signal processing; Frequency estimation; Maximum likelihood detection; Parameter estimation; Parametric statistics; Phase estimation; Poles and zeros; Signal processing;
Journal_Title :
Signal Processing, IEEE Transactions on