DocumentCode :
1096368
Title :
Synergy between Object Recognition and Image Segmentation Using the Expectation-Maximization Algorithm
Author :
Kokkinos, Iasonas ; Maragos, Petros
Author_Institution :
Dept. of Appl. Math., Ecole Centrale de Paris, Chatenay-Malabry
Volume :
31
Issue :
8
fYear :
2009
Firstpage :
1486
Lastpage :
1501
Abstract :
In this work, we formulate the interaction between image segmentation and object recognition in the framework of the Expectation-Maximization (EM) algorithm. We consider segmentation as the assignment of image observations to object hypotheses and phrase it as the E-step, while the M-step amounts to fitting the object models to the observations. These two tasks are performed iteratively, thereby simultaneously segmenting an image and reconstructing it in terms of objects. We model objects using Active Appearance Models (AAMs) as they capture both shape and appearance variation. During the E-step, the fidelity of the AAM predictions to the image is used to decide about assigning observations to the object. For this, we propose two top-down segmentation algorithms. The first starts with an oversegmentation of the image and then softly assigns image segments to objects, as in the common setting of EM. The second uses curve evolution to minimize a criterion derived from the variational interpretation of EM and introduces AAMs as shape priors. For the M-step, we derive AAM fitting equations that accommodate segmentation information, thereby allowing for the automated treatment of occlusions. Apart from top-down segmentation results, we provide systematic experiments on object detection that validate the merits of our joint segmentation and recognition approach.
Keywords :
expectation-maximisation algorithm; image recognition; image reconstruction; image segmentation; object detection; active appearance model; curve evolution; expectation-maximization algorithm; image observation; image reconstruction; image segmentation; object recognition; Active appearance model; Equations; Evolution (biology); Expectation-maximization algorithms; Fitting; Image reconstruction; Image segmentation; Iterative algorithms; Object detection; Object recognition; Active Appearance Models; Expectation Maximization; Image segmentation; curve evolution; generative models.; object recognition; top--down segmentation; Algorithms; Artificial Intelligence; Face; Humans; Image Processing, Computer-Assisted; Pattern Recognition, Automated; ROC Curve;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.2008.158
Filename :
5109419
Link To Document :
بازگشت