DocumentCode :
109809
Title :
Effect of Random, Discrete Source Dopant Distributions on Nanowire Tunnel FETs
Author :
Sylvia, Somaia Sarwat ; Habib, K. M. Masum ; Khayer, M. Abul ; Alam, Khairul ; Neupane, Mahesh ; Lake, Roger K.
Author_Institution :
Dept. of Electr. Eng., Univ. of California at Riverside, Riverside, CA, USA
Volume :
61
Issue :
6
fYear :
2014
fDate :
Jun-14
Firstpage :
2208
Lastpage :
2214
Abstract :
The finite number, random placement, and discrete nature of the dopants in the source of an InAs nanowire tunnel field-effect transistor affect the drive current and the inverse subthreshold slope. The impact of source scattering is negligible, since the current is limited by the interband tunneling. The most significant effect of the discrete dopants is to create variations of the electric fields in the tunnel barrier, which cause variations in the current. The relative variation in the ON current decreases as the average doping density and/or nanowire diameter increases. Results from full self-consistent nonequilibrium Green´s function calculations and semiclassical calculations are compared.
Keywords :
Green´s function methods; III-V semiconductors; field effect transistors; indium compounds; nanowires; semiconductor doping; tunnel transistors; InAs; average doping density; discrete nature; discrete source dopant distributions; drive current; finite number; interband tunneling; inverse subthreshold slope; nanowire tunnel FET; nonequilibrium Greens function calculations; random placement; source scattering; tunnel barrier; Chemicals; Doping; Electric potential; Logic gates; Quantum capacitance; Semiconductor process modeling; Tunneling; Discrete; InAs; doping; field-effect transistor (FET); nanowire; tunneling; tunneling.;
fLanguage :
English
Journal_Title :
Electron Devices, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9383
Type :
jour
DOI :
10.1109/TED.2014.2318521
Filename :
6812119
Link To Document :
بازگشت