DocumentCode :
1098603
Title :
A Body Area Propagation Model Derived From Fundamental Principles: Analytical Analysis and Comparison With Measurements
Author :
Fort, Andrew ; Keshmiri, Farshad ; Crusats, Gemma Roqueta ; Craeye, Christophe ; Oestges, Claude
Volume :
58
Issue :
2
fYear :
2010
Firstpage :
503
Lastpage :
514
Abstract :
Using wireless sensors worn on the body to monitor health information is a promising new application. To realize transceivers targeted for these applications, it is essential to understand the body area propagation channel. Several numerical, simulated, and measured body area propagation studies have recently been conducted. While many of these studies are useful for evaluating communication systems, they are not compared against or justified by more fundamental physical models derived from basic principles. This type of comparison is necessary to provide better physical insights into expected propagation trends and to justify modeling choices. To address this problem, we have developed a simple and generic body area propagation model derived directly from Maxwell´s equations revealing basic propagation trends away, inside, around, and along the body. We have verified the resulting analytical model by comparing it with measurements in an anechoic chamber. This paper develops an analytical model of the body, describes the expected body area pathloss trends predicted by Maxwell´s equations, and compares it with measurements of the electric field close to the body.
Keywords :
body area networks; patient monitoring; wireless sensor networks; Maxwell´s equations; anechoic chamber; body area networks; body area pathloss trends; electric field; health information; propagation model; wireless sensors; Analytical models; Anechoic chambers; Area measurement; Electric variables measurement; Maxwell equations; Monitoring; Numerical simulation; Transceivers; Wearable sensors; Wireless sensor networks; Body area networks; propagation model;
fLanguage :
English
Journal_Title :
Antennas and Propagation, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-926X
Type :
jour
DOI :
10.1109/TAP.2009.2025786
Filename :
5109638
Link To Document :
بازگشت