DocumentCode :
1098679
Title :
Modeling of the optical properties of a barrier, reservoir, and quantum-well electron transfer structure
Author :
Wang, Jin ; Leburton, J.P. ; Zucker, J.E.
Author_Institution :
Beckman Inst. for Adv. Sci. & Technol., Illinois Univ., Urbana, IL, USA
Volume :
30
Issue :
4
fYear :
1994
fDate :
4/1/1994 12:00:00 AM
Firstpage :
989
Lastpage :
996
Abstract :
We present a novel numerical simulator, OPCONS, for the analysis of the optical properties of InxGa1-xAs/In1-y AlyAs multiple-quantum-well heterostructures with tunable charge density. The influence of carriers and dopant ion charges on the electronic properties are simulated with a self-consistent Poisson-Schrodinger solver. The calculated optical constants of the quantum well reproduce well the experimental electrooptic characteristics. The code implements the drift-diffusion and thermionic emission currents to calculate the I-V characteristics and shows a good agreement with the experimental data
Keywords :
III-V semiconductors; Schrodinger equation; aluminium compounds; gallium arsenide; indium compounds; optical constants; semiconductor device models; semiconductor quantum wells; thermionic emission; I-V characteristics; InxGa1-xAs/In1-yAlyAs; InGaAs-InAlAs; OPCONS; barrier; carriers; dopant ion charges; drift-diffusion; electronic properties; electrooptic characteristics; multiple-quantum-well heterostructures; numerical simulator; optical constants; optical properties; quantum-well electron transfer structure; reservoir; self-consistent Poisson-Schrodinger solver; thermionic emission currents; tunable charge density; Electron optics; High speed optical techniques; Optical modulation; Optical refraction; Optical saturation; Optical variables control; Quantum well devices; Quantum wells; Refractive index; Reservoirs;
fLanguage :
English
Journal_Title :
Quantum Electronics, IEEE Journal of
Publisher :
ieee
ISSN :
0018-9197
Type :
jour
DOI :
10.1109/3.291386
Filename :
291386
Link To Document :
بازگشت