DocumentCode :
1102072
Title :
On-line neural network learning algorithm with exponential convergence rate
Author :
Zhao, Y.
Author_Institution :
Dept. of Electron. Eng., Hangzhou Univ., China
Volume :
32
Issue :
15
fYear :
1996
fDate :
7/18/1996 12:00:00 AM
Firstpage :
1381
Lastpage :
1382
Abstract :
A new on-line learning algorithm for feedforward neural networks is presented. This algorithm is realised by using a technique for minimum tracking of a time-dependent objective function. Theoretical analysis shows that it converges exponentially, and simulations show that it is very effective
Keywords :
convergence; feedforward neural nets; learning (artificial intelligence); exponential convergence rate; feedforward neural network; minimum tracking; on-line learning algorithm; simulation; time-dependent objective function;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:19960895
Filename :
511132
Link To Document :
بازگشت