DocumentCode :
1103815
Title :
On the stability of two-dimensional state-space systems: A special case
Author :
Fernando, K.V. ; Nicholson, H.
Author_Institution :
University of Sheffield, Sheffield, England
Volume :
32
Issue :
4
fYear :
1984
fDate :
8/1/1984 12:00:00 AM
Firstpage :
921
Lastpage :
922
Abstract :
The stability of two-dimensional state-space systems can be determined by knowing the zero manifolds of the characteristic equation \\det(I- z_{1}A_{1} - z_{2}A_{2}) = 0 or, equivalently, the eigenvalues of the matrix (A_{1} + e^{J\\omega }A_{2}) for all real ω. We propose a new simple test for the special case when the matrices A1and A2are simultaneously reducible to upper (or lower) triangular form. This test can also be used to simplify the general problem if these matrices are partially reducible to the triangular form.
Keywords :
Cepstral analysis; Cepstrum; Circuits; Control engineering; Discrete Fourier transforms; Discrete cosine transforms; Speech analysis; Speech processing; Stability; Testing;
fLanguage :
English
Journal_Title :
Acoustics, Speech and Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
0096-3518
Type :
jour
DOI :
10.1109/TASSP.1984.1164381
Filename :
1164381
Link To Document :
بازگشت