Title :
Unified Anomaly Suppression and Boundary Extraction in Laser Radar Range Imagery based on a Joint Curve-Evolution and Expectation-Maximization Algorithm
Author :
Feng, Haihua ; Karl, William Clem ; Castañon, David A.
Author_Institution :
MathWorks, Inc., Natick
fDate :
5/1/2008 12:00:00 AM
Abstract :
In this paper, we develop a new unified approach for laser radar range anomaly suppression, range profiling, and segmentation. This approach combines an object-based hybrid scene model for representing the range distribution of the field and a statistical mixture model for the range data measurement noise. The image segmentation problem is formulated as a minimization problem which jointly estimates the target boundary together with the target region range variation and background range variation directly from the noisy and anomaly-filled range data. This formulation allows direct incorporation of prior information concerning the target boundary, target ranges, and background ranges into an optimal reconstruction process. Curve evolution techniques and a generalized expectation-maximization algorithm are jointly employed as an efficient solver for minimizing the objective energy, resulting in a coupled pair of object and intensity optimization tasks. The method directly and optimally extracts the target boundary, avoiding a suboptimal two-step process involving image smoothing followed by boundary extraction. Experiments are presented demonstrating that the proposed approach is robust to anomalous pixels (missing data) and capable of producing accurate estimation of the target boundary and range values from noisy data.
Keywords :
curve fitting; expectation-maximisation algorithm; feature extraction; image reconstruction; image segmentation; laser ranging; minimisation; optical images; optical information processing; optical radar; radar imaging; background range variation; energy minimization approach; expectation-maximization algorithm; image segmentation problem; joint curve-evolution; laser radar range imagery; object-based hybrid scene model; optimal reconstruction process; range data measurement noise; range profiling; statistical mixture model; target region range variation; unified anomaly suppression; unified boundary extraction; Feature extraction; image processing; image segmentation; laser radar; Algorithms; Artifacts; Artificial Intelligence; Computer Simulation; Image Enhancement; Image Interpretation, Computer-Assisted; Imaging, Three-Dimensional; Information Storage and Retrieval; Lasers; Likelihood Functions; Models, Statistical; Pattern Recognition, Automated; Radar; Reproducibility of Results; Sensitivity and Specificity;
Journal_Title :
Image Processing, IEEE Transactions on
DOI :
10.1109/TIP.2008.919363