DocumentCode :
1105431
Title :
Improved All-Silicon Microcantilever Heaters With Integrated Piezoresistive Sensing
Author :
Lee, Jungchul ; King, William P.
Author_Institution :
Univ. of Illinois at Urbana-Champaign, Urbana
Volume :
17
Issue :
2
fYear :
2008
fDate :
4/1/2008 12:00:00 AM
Firstpage :
432
Lastpage :
445
Abstract :
This paper presents the design, fabrication, and characterization of improved all-silicon microcantilever heaters with integrated piezoresistive sensing. The fabricated microcantilever heaters with piezoresistors are made solely from single crystal silicon with selective doping. Detailed characterization was performed to test the devices´ electrical, thermal, and mechanical properties. The performance of and crosstalk between heater and piezoresistor elements were thoroughly tested. The resistive heater could reach temperatures of > 600degC, and its temperature coefficient of electrical resistance was (2.01 plusmn 0.04) times 10-3 Omega/Omega ldr degC. When biased at 2 V in a Wheatstone bridge, the deflection sensitivity of the piezoresistor was (4.25 plusmn 0.05) times 10-4 V/V ldr mum and remarkably, the heater circuit had a measurable deflection sensitivity of (7.9 plusmn 0.5) times 10-5 V/V ldr mum. Both the piezoresistor and the resistive heater were interfaced with a commercial atomic force microscope system to measure their sensitivities during topography imaging. The sensitivity of the thermal reading was much greater than that of piezoresistive reading. Noise-limited resolution of thermal reading was better than 0.46 plusmn 0.03 nm/radicHz and piezoresistive reading was better than 3.4 plusmn 0.4 nm/radicHz. This is the first experimental comparison between thermal and piezoresistive topographic sensing, both of which can replace optical lever sensing. Four cantilevers in an array demonstrated parallel topographic sensing with both the heater and the piezoresistor.
Keywords :
cantilevers; micromechanical devices; piezoresistive devices; sensors; Wheatstone bridge; all-silicon microcantilever heater; atomic force microscope system; crystal silicon; deflection sensitivity; heater circuit; parallel topographic sensing; piezoresistive reading; piezoresistive topographic sensing; piezoresistor element; resistive heater; selective doping; thermal reading; topography imaging; Atomic force microscopy; cantilever array; crosstalk; heated cantilever; heating; microelectromechanical devices; micromachining; piezoresistive reading; piezoresistor; strain; temperature; thermal reading;
fLanguage :
English
Journal_Title :
Microelectromechanical Systems, Journal of
Publisher :
ieee
ISSN :
1057-7157
Type :
jour
DOI :
10.1109/JMEMS.2008.918423
Filename :
4472997
Link To Document :
بازگشت