Title :
Blind Minimax Estimation
Author :
Ben-Haim, Zvika ; Eldar, Yonina C.
Author_Institution :
Technion-Israel Inst. of Technol., Haifa
Abstract :
We consider the linear regression problem of estimating an unknown, deterministic parameter vector based on measurements corrupted by colored Gaussian noise. We present and analyze blind minimax estimators (BMEs), which consist of a bounded parameter set minimax estimator, whose parameter set is itself estimated from measurements. Thus, our approach does not require any prior assumption or knowledge, and the proposed estimator can be applied to any linear regression problem. We demonstrate analytically that the BMEs strictly dominate the least-squares (LS) estimator, i.e., they achieve lower mean-squared error (MSE) for any value of the parameter vector. Both Stein´s estimator and its positive-part correction can be derived within the blind minimax framework. Furthermore, our approach can be readily extended to a wider class of estimation problems than Stein´s estimator, which is defined only for white noise and nontransformed measurements. We show through simulations that the BMEs generally outperform previous extensions of Stein´s technique.
Keywords :
Gaussian noise; blind source separation; least squares approximations; mean square error methods; parameter estimation; regression analysis; blind minimax estimation; blind minimax framework; colored Gaussian noise; deterministic parameter vector; least-squares estimator; linear regression problem; mean-squared error; parameter set minimax estimator; Bayesian methods; Covariance matrix; Gaussian noise; Helium; Linear regression; Minimax techniques; Noise measurement; Parameter estimation; Vectors; White noise; Biased estimation; James–Stein estimation; linear regression model; minimax estimation;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2007.903118