DocumentCode :
1106568
Title :
Value Distributions of Exponential Sums From Perfect Nonlinear Functions and Their Applications
Author :
Feng, Keqin ; Luo, Jinquan
Author_Institution :
Tsinghua Univ., Beijing
Volume :
53
Issue :
9
fYear :
2007
Firstpage :
3035
Lastpage :
3041
Abstract :
In this paper we present a unified way to determine the values and their multiplicities of the exponential sums SigmaxisinF(q)zetap Tr(af(x)+bx)(a,bisinFq,q=pm,pges3) for all perfect nonlinear functions f which is a Dembowski-Ostrom polynomial or p = 3,f=x(3(k)+1)/2 where k is odd and (k,m)=1. As applications, we determine (1) the correlation distribution of the m-sequence {alambda=Tr(gammalambda)}(lambda=0,1,...) and the sequence {blambda=Tr(f(gammalambda))}(lambda=0,1,...) over Fp where gamma is a primitive element of Fq and (2) the weight distributions of the linear codes over Fp defined by f.
Keywords :
correlation theory; linear codes; m-sequences; nonlinear functions; polynomials; Dembowski-Ostrom polynomial; correlation distribution; exponential sums; linear codes; m-sequence; nonlinear functions; value distributions; weight distributions; Cryptography; Hamming weight; Linear code; Mathematics; Polynomials; Correlation distribution; Galois group; exponential sums; perfect nonlinear; quadratic forms; weight distribution;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2007.903153
Filename :
4294155
Link To Document :
بازگشت