DocumentCode :
1106681
Title :
Application of Tauberian Theorem to the Exponential Decay of the Tail Probability of a Random Variable
Author :
Nakagawa, Kenji
Author_Institution :
Nagaoka Univ. of Technol., Niigata
Volume :
53
Issue :
9
fYear :
2007
Firstpage :
3239
Lastpage :
3249
Abstract :
In this correspondence, we give a sufficient condition for the exponential decay of the tail probability of a nonnegative random variable. We consider the Laplace-Stieltjes transform of the probability distribution function of the random variable. We present a theorem, according to which if the abscissa of convergence of the LS transform is negative finite and the real point on the axis of convergence is a pole of the LS transform, then the tail probability decays exponentially. For the proof of the theorem, we extend and apply so-called a finite form of Ikehara´s complex Tauberian theorem by Graham-Vaaler.
Keywords :
Laplace transforms; statistical distributions; Laplace-Stieltjes transform; Tail Probability; Tauberian theorem; exponential decay; nonnegative random variable; probability distribution function; Capacity planning; Convergence; Laplace equations; Performance analysis; Probability distribution; Queueing analysis; Random variables; Sufficient conditions; Tail; Time measurement; Complex Tauberian theorem; Graham–Vaaler´s finite form; Laplace transform; exponential decay; tail probability of random variable;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2007.903114
Filename :
4294165
Link To Document :
بازگشت