DocumentCode :
11074
Title :
Nonparametric Bayesian modeling of complex networks: an introduction
Author :
Schmidt, Mikkel N. ; Morup, Morten
Author_Institution :
DTU Inf., Tech. Univ. of Denmark, Lyngby, Denmark
Volume :
30
Issue :
3
fYear :
2013
fDate :
May-13
Firstpage :
110
Lastpage :
128
Abstract :
Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using an infinite mixture model as running example, we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model?s fit and predictive performance. We explain how advanced nonparametric models for complex networks can be derived and point out relevant literature.
Keywords :
Bayes methods; Markov processes; Monte Carlo methods; complex networks; telecommunication networks; Markov chain processing; Monte Carlo method; complex network; finite parametric model; infinite mixture model; nonparametric Bayesian modeling; Adaptation models; Bayes methods; Complex networks; Learning systems; Markov processes; Modeling; Monte Carlo methods;
fLanguage :
English
Journal_Title :
Signal Processing Magazine, IEEE
Publisher :
ieee
ISSN :
1053-5888
Type :
jour
DOI :
10.1109/MSP.2012.2235191
Filename :
6494690
Link To Document :
بازگشت