DocumentCode :
1107930
Title :
Near-optimal critical sink routing tree constructions
Author :
Boese, Kenneth D. ; Kahng, Andrew B. ; McCoy, Bernard A. ; Robins, Gabriel
Author_Institution :
Cadence Design Syst. Inc., San Jose, CA, USA
Volume :
14
Issue :
12
fYear :
1995
fDate :
12/1/1995 12:00:00 AM
Firstpage :
1417
Lastpage :
1436
Abstract :
We present critical-sink routing tree (CSRT) constructions which exploit available critical-path information to yield high-performance routing trees. Our CS-Steiner and “global slack removal” algorithms together modify traditional Steiner tree constructions to optimize signal delay at identified critical sinks. We further propose an iterative Elmore routing tree (ERT) construction which optimizes Elmore delay directly, as opposed to heuristically abstracting linear or Elmore delay as in previous approaches. Extensive timing simulations on industry IC and MCM interconnect parameters show that our methods yield trees that significantly improve (by averages of up to 67%) over minimum Steiner routings in terms of delays to identified critical sinks. ERTs also serve as generic high-performance routing trees when no critical sink is specified: for 8-sink nets in standard IC (MCM) technology, we improve average sink delay by 19% (62%) and maximum sink delay by 22% (52%) over the minimum Steiner routing. These approaches provide simple, basic advances over existing performance-driven routing tree constructions. Our results are complemented by a detailed analysis of the accuracy and fidelity of the Elmore delay approximation; we also exactly assess the suboptimality of our heuristic tree constructions. In achieving the latter result, we develop a new characterization of Elmore-optimal routing trees, as well as a decomposition theorem for optimal Steiner trees, which are of independent interest
Keywords :
circuit optimisation; delays; integrated circuit interconnections; multichip modules; network routing; trees (mathematics); CS-Steiner algorithm; IC interconnects; MCMs; Steiner tree; critical paths; decomposition theorem; global slack removal algorithm; heuristic constructions; iterative Elmore routing tree; near-optimal critical sink routing trees; signal delay; suboptimality; timing simulations; Associate members; Computer science; Cost function; Delay; Integrated circuit interconnections; Iterative algorithms; Routing; Signal processing; Steiner trees; Timing;
fLanguage :
English
Journal_Title :
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0070
Type :
jour
DOI :
10.1109/43.476573
Filename :
476573
Link To Document :
بازگشت