DocumentCode :
1108359
Title :
Maximum Entropy for Sums of Symmetric and Bounded Random Variables: A Short Derivation
Author :
Yu, Yaming
Author_Institution :
Univ. of California, Irvine
Volume :
54
Issue :
4
fYear :
2008
fDate :
4/1/2008 12:00:00 AM
Firstpage :
1818
Lastpage :
1819
Abstract :
Let X1,..., Xn be n independent, symmetric, random variables on the interval [-1, 1]. Ordentlich (2006) showed that the differential entropy of Sn= Sigmai=1 n Xi is maximized when Xi, i = 1,...,n-1 are symmetric Bernoulli random variables and Xn is uniform (-1, 1). We give a short derivation of this result via an alternative proof of a key lemma of Ordentlich (2006).
Keywords :
entropy; random codes; bounded random variable; differential entropy; maximum entropy; symmetric Bernoulli random variable; symmetric ramdom variable; Block codes; Entropy; Geometry; Lattices; Random variables; Rayleigh channels; Signal processing; Space time codes; Symmetric matrices; Upper bound; Differential entropy; maximum entropy;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2008.917660
Filename :
4475393
Link To Document :
بازگشت