DocumentCode :
1108488
Title :
An Algebraic Proof of the Paull–Unger Theorem
Author :
Prather, Ronald E.
Issue :
5
fYear :
1971
fDate :
5/1/1971 12:00:00 AM
Firstpage :
578
Lastpage :
580
Abstract :
The principal result of Paull and Unger on incomplete machine minimization is given an algebraic setting whereby an analogy with the classical minimization theory for Boolean functions is exhibited.
Keywords :
Closure operators, incomplete machines, irredundant coverings, minimization theory, Rabin–Scott automata.; Additives; Automata; Bismuth; Boolean functions; Bridges; Helium; Lattices; Mathematics; Minimization methods; Closure operators, incomplete machines, irredundant coverings, minimization theory, Rabin–Scott automata.;
fLanguage :
English
Journal_Title :
Computers, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9340
Type :
jour
DOI :
10.1109/T-C.1971.223294
Filename :
1671887
Link To Document :
بازگشت