DocumentCode :
1108529
Title :
Analysis of the Effects of Fringing Electric Field on FinFET Device Performance and Structural Optimization Using 3-D Simulation
Author :
Zhao, Hui ; Yeo, Yee-Chia ; Rustagi, Subhash C. ; Samudra, Ganesh Shankar
Author_Institution :
Nat. Univ. of Singapore, Singapore
Volume :
55
Issue :
5
fYear :
2008
fDate :
5/1/2008 12:00:00 AM
Firstpage :
1177
Lastpage :
1184
Abstract :
In this paper, the potential impact of parasitic capacitance resulting from fringing field on FinFET device performance is studied in detail using a 3-D simulator implemented with quantum-mechanical models. It was found that fringing field from gate to source contributes significantly to FinFET performance and speed. The strength of fringing field is closely related to device features such as gate-dielectric thickness, the spacer width, fin width and pitch, as well as the gate height. For undoped fin with underlapping (nonoverlapping source/drain) gate, a thinner spacer with higher kappa value enhances the gate control of short-channel effects (SCEs) and reduces the source-to-drain leakage current. Our results also suggest that reducing the high- gate-dielectric thickness is no longer an effective approach to improve performance in small FinFET devices due to the strong fringing effect. However, the introduction of thin metal gate in a multifin device was found beneficial to device speed without compromising on current drive and SCE.
Keywords :
MOSFET; electric fields; 3D simulation; FinFET device; fringing electric field; gate-dielectric thickness; high-gate-dielectric thickness; nonoverlapping source-drain gate; parasitic capacitance; quantum-mechanical models; short-channel effects; source-to-drain leakage current; spacer width; Analytical models; FinFETs; Geometry; Laboratories; Leakage current; MOSFET circuits; Microelectronics; Parasitic capacitance; Performance analysis; Silicon; Capacitance; FinFET; fringing electric field; simulation;
fLanguage :
English
Journal_Title :
Electron Devices, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9383
Type :
jour
DOI :
10.1109/TED.2008.919308
Filename :
4475424
Link To Document :
بازگشت