DocumentCode :
1110301
Title :
Fuzzy conceptual indexing for concept-based cross-lingual text retrieval
Author :
Chau, Rowena ; Yeh, Chung-Hsing
Author_Institution :
Monash Univ., Clayton, Vic., Australia
Volume :
8
Issue :
5
fYear :
2004
Firstpage :
14
Lastpage :
21
Abstract :
Cross-lingual text retrieval (CLTR) is a technique for locating relevant documents in different languages. The authors have developed fuzzy conceptual indexing (FCI) to extend CLTR to include documents that share concepts but don´t contain exact translations of query terms. In FCI, documents and queries are represented as a function of language-independent concepts, thus enabling direct mapping between them across multiple languages. Experimental results suggest that concept-based CLTR outperforms translation-based CLTR in identifying conceptually relevant documents.
Keywords :
Internet; database indexing; document handling; fuzzy set theory; information retrieval; language translation; linguistics; natural languages; concept-based cross-lingual text retrieval; document retrieval; fuzzy conceptual indexing; language-independent concepts; query terms; Clustering algorithms; Humans; Indexing; Information retrieval; Internet; Natural languages; Pattern matching; Search engines; Vocabulary; 65; cross-lingual text retrieval; fuzzy clustering; indexing;
fLanguage :
English
Journal_Title :
Internet Computing, IEEE
Publisher :
ieee
ISSN :
1089-7801
Type :
jour
DOI :
10.1109/MIC.2004.38
Filename :
1336737
Link To Document :
بازگشت