DocumentCode :
1113013
Title :
Minimum-norm method without eigendecomposition
Author :
Shaw, Amab K. ; Xia, Wei
Author_Institution :
Dept. of Electr. Eng., Wright State Univ., Dayton, OH, USA
Volume :
1
Issue :
1
fYear :
1994
Firstpage :
12
Lastpage :
14
Abstract :
The minimum-norm method (MNM) for high-resolution angles-of-arrival (AOA) estimation relies on special-purpose hardware or software for obtaining the signal and noise subspace eigenvectors of autocorrelation (AC) matrices. It is shown that the discrete Fourier transform (DFT) of the AC matrix (DFT-of-AC) essentially performs an equivalent task of separating the signal and noise subspaces. Furthermore, when the signal-subspace part of the DFT-of-AC vectors are used in MNM, almost identical high-resolution AOA estimates are produced.<>
Keywords :
array signal processing; correlation methods; eigenvalues and eigenfunctions; fast Fourier transforms; minimisation; AC matrices; AOA estimation; DFT-of-AC; autocorrelation matrices; discrete Fourier transform; eigendecomposition; high-resolution angles-of-arrival estimation; minimum-norm method; noise subspace eigenvectors; signal subspace eigenvectors; Autocorrelation; Covariance matrix; Frequency estimation; Hardware; Iterative algorithms; Iterative methods; Narrowband; Optimization methods; Signal processing algorithms; Signal resolution;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/97.295314
Filename :
295314
Link To Document :
بازگشت