Title :
Reconfiguration for Repair in a Class of Universal Logic Modules
Author :
Gray, F. Gail ; Thompson, Richard A.
Author_Institution :
Department of Electrical Engineering, Virginia Polytechnic Institute and State University
Abstract :
A class of universal finite-state machine structures employing arrays of identical modules is shown to be capable of dynamic repair by the process of reconfiguration. Coverage on the order of 98 percent of all stuck-at faults is demonstrated with no redesign of the array being necessary. After specifying a formal model for the array structure, a complete theory is developed capable of determining the minimal number of configurations necessary to obtain maximal coverage of stuck-at faults without redesigning the network. Inherent redundancy in the array structure results in this unusual capability. Many faults are also tolerated in each system configuration.
Keywords :
Arrays, dynamic repair, fault tolerance, reconfiguration, tree structures, universal finite-state machine modules.; Fault tolerance; Input variables; Large scale integration; Logic arrays; Logic programming; Programmable logic arrays; Reconfigurable logic; Redundancy; State feedback; Tree data structures; Arrays, dynamic repair, fault tolerance, reconfiguration, tree structures, universal finite-state machine modules.;
Journal_Title :
Computers, IEEE Transactions on
DOI :
10.1109/T-C.1974.223828