DocumentCode :
1114165
Title :
The Modular Arithmetic of Arbitrarily Long Sequences of Digits
Author :
Suter, Bruce W.
Author_Institution :
Honeywell, Inc.
Issue :
12
fYear :
1974
Firstpage :
1301
Lastpage :
1303
Abstract :
Some fundamental results in the area of computability theory are presented. These include the fact that a finite state machine can find the residue of an arbitrarily long sequence using any modulus and any radix. This leads to the consideration of using modular arithmetic on arbitrarily long sequences with a finite state machine. A finite state machine can perform modular addition, subtraction, multiplication, and, if defined, division of a pair of arbitrarily large numbers, using any modulus and any radix.
Keywords :
Computability theory, computer arithmetic, modular addition, modular arithmetic, modular division, modular multiplication, modular subtraction, modulus, residue.; Application software; Automata; Binary sequences; Circuits; Digital arithmetic; Electrons; Flowcharts; Iterative algorithms; Computability theory, computer arithmetic, modular addition, modular arithmetic, modular division, modular multiplication, modular subtraction, modulus, residue.;
fLanguage :
English
Journal_Title :
Computers, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9340
Type :
jour
DOI :
10.1109/T-C.1974.223850
Filename :
1672443
Link To Document :
بازگشت