Title :
A High-Efficiency DC–DC Converter Using 2 nH Integrated Inductors
Author :
Wibben, Josh ; Harjani, Ramesh
Author_Institution :
Univ. of Minnesota, Minneapolis
fDate :
4/1/2008 12:00:00 AM
Abstract :
Historically, buck converters have relied on high-Q inductors on the order of 1 to 100 muH to achieve a high efficiency. Unfortunately, on-chip inductors are physically large and have poor series resistances, which result in low-efficiency converters. To mitigate this problem, on-chip magnetic coupling is exploited in the proposed stacked interleaved topology to enable the use of small (2 nH) on-chip inductors in a high-efficiency buck converter. The dramatic decrease in the inductance value is made possible by the unique bridge timing of the stacked design that causes magnetic coupling to boost the converter´s efficiency by reducing the current ripple in each inductor. The magnetic coupling is realized by stacking the two inductors on top of one another, which not only lowers the required inductance, but also reduces the chip area consumed by the two inductors. The measured conversion efficiency for the prototype circuit, implemented in a 130-nm CMOS technology, shows more than a 15% efficiency improvement over a linear converter for low output voltages rising to a peak efficiency of 77.9 % for a 0.9 V output. These efficiencies are comparable to converters implemented with higher Q inductors, validating that the proposed techniques enable high-efficiency converters to be realized with small on-chip inductors.
Keywords :
CMOS integrated circuits; DC-DC power convertors; inductors; CMOS technology; DC-DC converter; high-efficiency buck converter; inductance value; integrated inductors; linear converter; on-chip inductors; on-chip magnetic coupling; series resistances; size 130 nm; stacked interleaved topology; voltage 0.9 V; Bridge circuits; Buck converters; CMOS technology; Coupling circuits; Inductance; Inductors; Semiconductor device measurement; Stacking; Timing; Topology; Magnetic coupling; ripple cancellation; switch-mode voltage regulator; synchronous rectification;
Journal_Title :
Solid-State Circuits, IEEE Journal of
DOI :
10.1109/JSSC.2008.917321