Title :
Geometric Mean for Subspace Selection
Author :
Tao, Dacheng ; Li, Xuelong ; Wu, Xindong ; Maybank, Stephen J.
Author_Institution :
Birkbeck Coll., Univ. of London, London
Abstract :
Subspace selection approaches are powerful tools in pattern classification and data visualization. One of the most important subspace approaches is the linear dimensionality reduction step in the Fisher´s linear discriminant analysis (FLDA), which has been successfully employed in many fields such as biometrics, bioinformatics, and multimedia information management. However, the linear dimensionality reduction step in FLDA has a critical drawback: for a classification task with c classes, if the dimension of the projected subspace is strictly lower than c - 1, the projection to a subspace tends to merge those classes, which are close together in the original feature space. If separate classes are sampled from Gaussian distributions, all with identical covariance matrices, then the linear dimensionality reduction step in FLDA maximizes the mean value of the Kullback-Leibler (KL) divergences between different classes. Based on this viewpoint, the geometric mean for subspace selection is studied in this paper. Three criteria are analyzed: 1) maximization of the geometric mean of the KL divergences, 2) maximization of the geometric mean of the normalized KL divergences, and 3) the combination of 1 and 2. Preliminary experimental results based on synthetic data, UCI Machine Learning Repository, and handwriting digits show that the third criterion is a potential discriminative subspace selection method, which significantly reduces the class separation problem in comparing with the linear dimensionality reduction step in FLDA and its several representative extensions.
Keywords :
Gaussian distribution; covariance matrices; data reduction; feature extraction; geometry; merging; optimisation; pattern classification; Fisher linear discriminant analysis; Gaussian distribution; Kullback-Leibler divergence; covariance matrix; data visualization; feature space; geometric mean maximization; linear dimensionality reduction; pattern classification; subspace selection; Arithmetic mean; Fisher´s linear discriminant analysis (FLDA); Kullback-Leibler (KL) divergence; Numerical Analysis; Probability and Statistics; geometric mean; machine learning; subspace selection (or dimensionality reduction); visualization.; Algorithms; Artificial Intelligence; Computer Simulation; Data Interpretation, Statistical; Discriminant Analysis; Models, Theoretical; Pattern Recognition, Automated;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
DOI :
10.1109/TPAMI.2008.70