Title :
Anomalous effects of lamp annealing in modulation-doped In0.53Ga0.47As/In0.52Al0.48As and Si-implanted In0.53Ga0.47As
Author :
Seo, Kwang S. ; Berger, Paul R. ; Kothiyal, G.P. ; Bhattacharya, Pallab K.
Author_Institution :
University of Michigan, Ann Arbor, MI
fDate :
2/1/1987 12:00:00 AM
Abstract :
The effects of pulsed halogen-lamp annealing on modulation-doped In0.53Ga0.47As/In0.52Al0.48As heterostructures and Si-implanted In0.53Ga0.47As have been studied to determine the suitabiiity of this process in the fabrication of high-performance field-effect transistors. Implantation and annealing of these materials are necessary for contact and self-aligned gate formation. Mobilities as high as 7400 cm2/ V . s are measured at 300 K in undoped molecular-beam epitaxy In-GaAs implanted with 8 × 1012cm-2 29Si+and lamp annealed at 700°C for 5 s. Anomalous overactivations (up to 120 percent) are observed in these layers When silox encapsulation is used during annealing, but the effect is absent for GaAs proximity capping. Sharp decreases in sheet-electron concentration and mobility occur in the normal modulation-doped structures for annealing temperatures > 750°C, while this trend is much smaller in the inverted structures. Arsenic loss from the In-AlAs doping layer is attributed as the main mechanism for this behavior, which makes the inverted structure more suitable for device processing. Depth profiling in the modulation-doped structures indicates that there may be serious pinchoff problems in these devices when annealed at higher temperatures due to outdiffusion of impurities from the InP substrate. Values of interdiffusion coefficients at the InGaAs/ InAIAs heterointerfaces, being reported for the first time, are almost three orders higher than those measured in the GaAs/AIAs systems.
Keywords :
Annealing; Encapsulation; Epitaxial layers; FETs; Fabrication; Gallium arsenide; Lamps; Molecular beam epitaxial growth; Pulse modulation; Temperature;
Journal_Title :
Electron Devices, IEEE Transactions on
DOI :
10.1109/T-ED.1987.22912