• DocumentCode
    1115063
  • Title

    The spectral p-n junction model for tandem solar-cell design

  • Author

    Nell, Matthias E. ; Barnett, Allen M.

  • Author_Institution
    Technische Universität Berlin, Berlin, Germany
  • Volume
    34
  • Issue
    2
  • fYear
    1987
  • fDate
    2/1/1987 12:00:00 AM
  • Firstpage
    257
  • Lastpage
    266
  • Abstract
    Tandem solar cells can have significantly higher efficiencies than single-junction solar cells because they convert a larger fraction of the incident solar spectrum to electricity. For the design of tandem solar cells the spectral p-n junction model is proposed. It is based on tabulated standard spectra, on the fit of experimentally achieved open-circuit voltages, and assumes a quantum efficiency of unity. By consistent treatment of the energy gap in the diode equation, the model can be quantitatively applied to all tandem solar-cell systems. The special form and use of the reverse saturation current density is discussed in detail. The spectral p-n junction model is rigorously applied based on accepted standard spectra. The tandem solar-cell performance limits based on the model are calculated. A quantitative expression for the increase in efficiency under concentration is derived. Choosing materials with optimum bandgaps, a two-solar-cell two-terminal tandem system can achieve a theoretical maximum efficiency of 38.2-percent (AM1.5 global). A two-solar-cell four-terminal tandem system can have a maximum efficiency of 39.1 percent at the same spectrum. This four-terminal system allows more freedom in choosing the most efficient bandgap combinations. Assuming realistic losses, a configuration consisting of a Si solar cell on the bottom and a solar cell with a bandgap, Eg= 1.85 eV on the top, a maximum efficiency of 32.1 percent (AM1.5 global) can be predicted. Increased efficiency can be obtained from a three-solar-cell six-terminal tandem system. With an optimum bandgap combination the theoretical maximum efficiency is 44.5 percent (AM1.5 global) for the three-solar-cell system. The limits predicted by the model are discussed for tabulated standard spectra. The highest achievable efficiency is 57.3 percent (AM1.5 global) without concentration of the incident light. The increase in efficiency under concentration is evaluated, and it is found that the relative change of the efficiency at any concentration X is linear with In (X).
  • Keywords
    Charge carrier processes; Current density; Diodes; Energy conversion; Equations; P-n junctions; Photonic band gap; Photovoltaic cells; Predictive models; Voltage;
  • fLanguage
    English
  • Journal_Title
    Electron Devices, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9383
  • Type

    jour

  • DOI
    10.1109/T-ED.1987.22916
  • Filename
    1486627