DocumentCode :
1115070
Title :
Image Feature Extraction Using Diameter-Limited Gradient Direction Histograms
Author :
Birk, J. ; Kelley, Richard ; Chen, N. ; Wilson, L.
Author_Institution :
Department of Electrical Engineering, University of Rhode Island, Kingston, RI 02881.
Issue :
2
fYear :
1979
fDate :
4/1/1979 12:00:00 AM
Firstpage :
228
Lastpage :
235
Abstract :
Features extracted by operators which examine diameter-limited gradient direction histograms are important because they describe images of industrial workpieces efficiently and have the potential for rapid computation via special purpose hardware. When such operators are passed over an image in raster fashion, features such as the following are detected: a strong peak in the direction histogram indicating the presence of a relatively straight edge, a second strong direction indicating a corner, a wide direction group indicating a curved edge, and a uniform distribution of directions over the histogram indicating small holes. Diameter-limited optimization can be used to substantially reduce the number of pixels which have been given feature labels by such operators without losing descriptive power. Feature labels for direction histograms having a second strong direction, a wide direction group, or a uniform distribution might be retained only if all other pixels within a circular aperture have a lower bin value. Pixels with a strong direction label might be retained only if all other pixels within a circular aperture and along the gradient direction have a smaller bin value. Tracking can then be applied to the remaining strong direction pixels in the direction perpendicular to the gradient to achieve representation of edges by endpoints. Experimental results indicate that descriptions which are compatible with human interpretation can be achieved.
Keywords :
Apertures; Computer industry; Computer vision; Feature extraction; Hardware; Histograms; Humans; Image edge detection; Image representation; Pixel; Computer vision; diameter limited computations; gradient direction histograms; image feature extraction; image representation; vision for industrial parts;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.1979.4766910
Filename :
4766910
Link To Document :
بازگشت