DocumentCode :
1115202
Title :
Learning from Imbalanced Data
Author :
He, Haibo ; Garcia, Edwardo A.
Author_Institution :
Dept. of Electr. & Comput. Eng., Stevens Inst. of Technol., Hoboken, NJ, USA
Volume :
21
Issue :
9
fYear :
2009
Firstpage :
1263
Lastpage :
1284
Abstract :
With the continuous expansion of data availability in many large-scale, complex, and networked systems, such as surveillance, security, Internet, and finance, it becomes critical to advance the fundamental understanding of knowledge discovery and analysis from raw data to support decision-making processes. Although existing knowledge discovery and data engineering techniques have shown great success in many real-world applications, the problem of learning from imbalanced data (the imbalanced learning problem) is a relatively new challenge that has attracted growing attention from both academia and industry. The imbalanced learning problem is concerned with the performance of learning algorithms in the presence of underrepresented data and severe class distribution skews. Due to the inherent complex characteristics of imbalanced data sets, learning from such data requires new understandings, principles, algorithms, and tools to transform vast amounts of raw data efficiently into information and knowledge representation. In this paper, we provide a comprehensive review of the development of research in learning from imbalanced data. Our focus is to provide a critical review of the nature of the problem, the state-of-the-art technologies, and the current assessment metrics used to evaluate learning performance under the imbalanced learning scenario. Furthermore, in order to stimulate future research in this field, we also highlight the major opportunities and challenges, as well as potential important research directions for learning from imbalanced data.
Keywords :
data mining; decision making; large-scale systems; learning (artificial intelligence); complex systems; data availability; data engineering; decision making; imbalanced data; knowledge discovery; large-scale systems; learning; networked systems; Imbalanced learning; active learning; assessment metrics.; classification; cost-sensitive learning; kernel-based learning; sampling methods;
fLanguage :
English
Journal_Title :
Knowledge and Data Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
1041-4347
Type :
jour
DOI :
10.1109/TKDE.2008.239
Filename :
5128907
Link To Document :
بازگشت