Author :
Payaró, Miquel ; Pascual-Iserte, Antonio ; Lagunas, Miguel Angel
Abstract :
In this paper, we study the design of the transmitter in the downlink of a multiuser and multiantenna wireless communications system, considering the realistic scenario where only an imperfect estimate of the actual channel is available at both communication ends. Precisely, the actual channel is assumed to be inside an uncertainty region around the channel estimate, which models the imperfections of the channel knowledge that may arise from, e.g., estimation Gaussian errors, quantization effects, or combinations of both sources of errors. In this context, our objective is to design a robust power allocation among the information symbols that are to be sent to the users such that the total transmitted power is minimized, while maintaining the necessary quality of service to obtain reliable communication links between the base station and the users for any possible realization of the actual channel inside the uncertainty region. This robust power allocation is obtained as the solution to a convex optimization problem, which, in general, can be numerically solved in a very efficient way, and even for a particular case of the uncertainty region, a quasi-closed form solution can be found. Finally, the goodness of the robust proposed transmission scheme is presented through numerical results. Robust designs, imperfect CSI, multiantenna systems, broadcast channel, convex optimization.
Keywords :
antenna arrays; broadcast channels; channel estimation; optimisation; quality of service; base station; broadcast channel; channel estimation; channel knowledge; convex optimization; information symbols; multiantenna downlink communication; multiuser communication systems; power allocation; quality of service; Context-aware services; Design optimization; Downlink; Estimation error; Power system modeling; Quantization; Robustness; Transmitters; Uncertainty; Wireless communication;