DocumentCode :
1116464
Title :
On the Inequality of Cover and Hart in Nearest Neighbor Discrimination
Author :
Devroye, Luc
Author_Institution :
School of Computer Science, McGill University, Montreal, P.Q., Canada.
Issue :
1
fYear :
1981
Firstpage :
75
Lastpage :
78
Abstract :
When (X1, ¿1),..., (Xn, ¿n) are independent identically distributed random vectors from IRd X {0, 1} distributed as (X, ¿), and when ¿ is estimated by its nearest neighbor estimate ¿(1), then Cover and Hart have shown that P{¿(1) ¿ ¿}n ¿ ¿ ¿ 2E {¿ (X) (1 - ¿(X))} ¿ 2R*(1 - R*) where R* is the Bayes probability of error and ¿(x) = P{¿ = 1 | X = x}. They have conditions on the distribution of (X, ¿). We give two proofs, one due to Stone and a short original one, of the same result for all distributions of (X, ¿). If ties are carefully taken care of, we also show that P{¿(1) ¿ ¿|X1, ¿1, ..., Xn, ¿n} converges in probability to a constant for all distributions of (X, ¿), thereby strengthening results of Wagner and Fritz.
Keywords :
Computer errors; Computer science; Convergence; Extraterrestrial measurements; Nearest neighbor searches; Random variables; Bayes´ risk; inequality of Cover and Hart; nearest neighbor rule; nonparametric discrimination; probability of error;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.1981.4767052
Filename :
4767052
Link To Document :
بازگشت