DocumentCode :
1118950
Title :
Optimal Fuzzy Partitions: A Heuristic for Estimating the Parameters in a Mixture of Normal Distributions
Author :
Bezdek, James C. ; Dunn, Joseph C.
Author_Institution :
Department of Mathematics and Statistics, Marquette University
Issue :
8
fYear :
1975
Firstpage :
835
Lastpage :
838
Abstract :
An algorithm is described for generating fuzzy partitions which extremize a fuzzy extension of the k-means squared-error criterion function on finite data sets X. It is shown how this algorithm may be applied to the problem of estimating the parameters (a priori probabilities, means, and covariances) of mixture of multivariate normal densities, given a finite sample X drawn from the mixture. The behavior of the algorithm is compared with that of the ordinary ISODATA clustering process and the maximum likelihood method, for a specific bivariate mixture.
Keywords :
Fuzzy sets, maximum likelihood, mixed normal distributions, parametric estimation, pattern classification, unsupervised learning.; Clustering algorithms; Fuzzy sets; Gaussian distribution; Mathematics; Maximum likelihood estimation; Parameter estimation; Partitioning algorithms; Servomechanisms; Servomotors; Telecommunications; Fuzzy sets, maximum likelihood, mixed normal distributions, parametric estimation, pattern classification, unsupervised learning.;
fLanguage :
English
Journal_Title :
Computers, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9340
Type :
jour
DOI :
10.1109/T-C.1975.224317
Filename :
1672910
Link To Document :
بازگشت