DocumentCode :
1120042
Title :
Optimum Recursive Filtering of Noisy Two-Dimensional Data with Sequential Parameter Identification
Author :
Yum, Young-Ho ; Park, Song B.
Author_Institution :
Department of Electrical Sciences, Korea Advanced Institute of Science and Technology, Seoul, Korea.
Issue :
3
fYear :
1983
fDate :
5/1/1983 12:00:00 AM
Firstpage :
337
Lastpage :
344
Abstract :
A two-dimensional recursive estimation algorithm based on the asymmetric half-plane model is described for the problem of MMSE (minimum mean-square error) filtering. The optimum filtering problem is solved by formulating the asymmetric half-plane ARMA (autoregressive moving average) model for two-dimensional data. The sequential parameter identification from the noisy two-dimensional data is also discussed, utilizing the stochastic approximation. Experiments were performed for real image data, combining the proposed parameter identification and estimation algorithms. The results show that this method gives considerable improvement in SNR.
Keywords :
Convolution; Equations; Filtering; Fourier transforms; Image coding; Image processing; Karhunen-Loeve transforms; Kernel; Parameter estimation; Stochastic processes; Asymmetric half-plane model; autoregressive moving average; image enhancement; optimum recursive filtering; sequential parameter identification; stochastic approximation;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.1983.4767396
Filename :
4767396
Link To Document :
بازگشت