DocumentCode
1120645
Title
Investigation of the reverse power flow requirements of high penetrations of small-scale embedded generation
Author
Cipcigan, L.M. ; Taylor, P.C.
Author_Institution
Durham Univ., Durham
Volume
1
Issue
3
fYear
2007
fDate
9/1/2007 12:00:00 AM
Firstpage
160
Lastpage
166
Abstract
The research carried out to investigate the ability of power transformers to facilitate the required power flows associated with the anticipated high penetrations of small scale embedded generation (SSEG), within small-scale energy zones (SSEZs) is described. A small-scale energy zone is defined as a section of low-voltage, network with a high penetration of SSEGs, controllable loads and energy storage units. SSEZs, coupled with active control techniques, have the potential to assist the growth of SSEGs by removing network constraints and enabling blocks of aggregated and controlled SSEGs to participate more effectively in energy markets and network operational tasks. The research focused on identifying the reverse power flow and thermal-rating constraints imposed by power transformers. The analysis was performed using an approved UK generic PSCAD/ EMTDC electrical network model, with varying levels of SSEGs. Simulations were carried out examining cases with a uniform distribution of SSEGs contained within a number of SSEZs. It was observed that in some cases the reverse power flow capability of the primary transformers would exceed if each customer installed an SSEG with a rating of approximately 1 kW.
Keywords
power distribution planning; power generation economics; power markets; power system simulation; power transformers; energy markets; generic PSCAD/ EMTDC electrical network model; low-voltage network; network constraints; network operational tasks; power transformers; primary transformers; reverse power flow capability; small-scale embedded generation; small-scale energy zones; thermal-rating constraints;
fLanguage
English
Journal_Title
Renewable Power Generation, IET
Publisher
iet
ISSN
1752-1416
Type
jour
DOI
10.1049/iet-rpg:20070011
Filename
4302789
Link To Document