DocumentCode :
1120759
Title :
A Novel Parameter Identification Approach via Hybrid Learning for Aggregate Load Modeling
Author :
Bai, Hua ; Zhang, Pei ; Ajjarapu, Venkataramana
Author_Institution :
Dept. of Electr. & Comput. Eng., Iowa State Univ., Ames, IA, USA
Volume :
24
Issue :
3
fYear :
2009
Firstpage :
1145
Lastpage :
1154
Abstract :
Parameter identification is the key technology in measurement-based load modeling. A hybrid learning algorithm is proposed to identify parameters for the aggregate load model (ZIP augmented with induction motor). The hybrid learning algorithm combines the genetic algorithm (GA) and the nonlinear Levenberg-Marquardt (L-M) algorithm. It takes advantages of the global search ability of GA and the local search ability of L-M algorithm, which is a more powerful search technique. The proposed algorithm is tested for load parameter identifications using both simulation data and field measurement data. Numerical results illustrate that the hybrid learning algorithm can improve the accuracy and reduce the computation time for load model parameter identifications.
Keywords :
genetic algorithms; learning (artificial intelligence); load management; aggregate load modeling; genetic algorithm; global search ability; hybrid learning; nonlinear Levenberg-Marquardt algorithm; parameter identification; Genetic algorithm; Levenberg–Marquardt algorithm; hybrid learning algorithm; load modeling; parameter identification;
fLanguage :
English
Journal_Title :
Power Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-8950
Type :
jour
DOI :
10.1109/TPWRS.2009.2022984
Filename :
5152912
Link To Document :
بازگشت