Title :
A Mechanical Flux Weakening Method for Switched Flux Permanent Magnet Machines
Author :
Zhu, Z.Q. ; Al-Ani, M.M.J. ; Liu, X. ; Beomseok Lee
Author_Institution :
Electr. Machines & Drives Group, Univ. of Sheffield, Sheffield, UK
Abstract :
Several switched flux permanent magnet (SFPM) machines with mechanically movable flux adjusting technique are proposed, analyzed, and compared for applications which demand high speed and efficiency. By using ferromagnetic pieces--one per every stator pole or every alternative stator pole, which are named as flux adjusters (FAs) and located on the outside surface of the stator-the airgap flux density can be weakened and therefore the operation speed range and flux weakening capability can be improved. The influence of using all or alternative FAs on the open circuit results, electromagnetic performance, and torque-speed characteristics of the SFPM machine is investigated through three SFPM machines with different stator/rotor pole combinations, i.e., 12/10, 12/13, and 12/14. Moreover, although using FAs in all stator poles can significantly improve the flux weakening capability, alternative FAs can also achieve remarkable improvement although higher torque ripple is observed. Additionally, it has been found that the 12/13 combination is considered to be the most suitable candidate for alternative FAs technique. In addition to 2-D finite-element analysis (FEA) and analytical methods, 3-D FEA results accounting for the end-effect are presented. Furthermore, experiments are performed to validate the results.
Keywords :
finite element analysis; permanent magnet machines; poles and towers; rotors; stators; 2-D finite-element analysis; 3-D FEA; SFPM machines; ferromagnetic pieces; flux adjusters; flux weakening capability; mechanical flux weakening method; mechanically movable flux adjusting technique; stator pole; stator-rotor pole combinations; switched flux permanent magnet machines; torque-speed characteristics; Coils; Forging; Rotors; Stator windings; Torque; Windings; Flux weakening; mechanical flux adjusters (FAs); switched flux; variable flux;
Journal_Title :
Energy Conversion, IEEE Transactions on
DOI :
10.1109/TEC.2014.2380851