DocumentCode :
1122010
Title :
Orthonormal Hilbert-Pair of Wavelets With (Almost) Maximum Vanishing Moments
Author :
Tay, David B H ; Kingsbury, Nick G. ; Palaniswami, M.
Author_Institution :
Dept. of Electron. Eng., La Trobe Univ., Bundoora, Vic.
Volume :
13
Issue :
9
fYear :
2006
Firstpage :
533
Lastpage :
536
Abstract :
An orthonormal Hilbert-pair consists of a pair of conjugate-quadrature-filter (CQF) banks such that the equivalent wavelet function of both banks are approximate Hilbert transforms of each other. We found that the celebrated orthonormal wavelets of Daubechies, which have maximum vanishing-moment (VM), cannot be used to construct good Hilbert-pairs. In this letter, we reduce the number of VM by one and construct a Hilbert-pair with almost maximum VM. Each pair of wavelets are time-reverse versions of each other, and the individual wavelets are of the least asymmetric type (i.e., approximate linear phase CQF)
Keywords :
Hilbert transforms; approximation theory; channel bank filters; wavelet transforms; CQF; Hilbert transform; approximation; conjugate-quadrature-filter bank; equivalent wavelet function; maximum vanishing-moment; orthonormal Hilbert-pair wavelet; time-reverse version; Filter bank; Fourier transforms; Frequency response; Linear approximation; Low pass filters; Noise reduction; Polynomials; Signal processing; Virtual manufacturing; Wavelet transforms; Bernstein polynomial; Hilbert-pair; complex wavelet; orthonormal filter banks;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2006.874453
Filename :
1673413
Link To Document :
بازگشت