DocumentCode :
1122021
Title :
Decomposition of Toeplitz Matrices via Convex Optimization
Author :
Georgiou, Tryphon T.
Author_Institution :
Dept. of Electr. & Comput. Eng., Minnesota Univ.
Volume :
13
Issue :
9
fYear :
2006
Firstpage :
537
Lastpage :
540
Abstract :
We point out that autocovariance functions of moving average processes of any given order m can be characterized via a linear matrix inequality (LMI). This LMI-condition can be used to decompose any Toeplitz autococovariance matrix into a sum of a singular Toeplitz covariance plus the autocovariance matrix of a moving average process of order m and of maximal variance. The decomposition is unique and subsumes the Pisarenko harmonic decomposition that corresponds to m=0. It can be used to account for mutual couplings between elements in linear antenna arrays or identify colored noise consistent with the covariance data. The same LMI-condition leads to an efficient computation of the least order of a MA-spectrum that agrees with covariance moments
Keywords :
Toeplitz matrices; convex programming; covariance matrices; electromagnetic coupling; linear antenna arrays; linear matrix inequalities; matrix decomposition; moving average processes; LMI; MA-spectrum; Pisarenko harmonic decomposition; Toeplitz autococovariance matrix; convex optimization; linear antenna array; linear matrix inequality; matix decomposition; moving average process; mutual coupling; singular Toeplitz covariance; Colored noise; Covariance matrix; Direction of arrival estimation; Gaussian processes; Helium; Linear antenna arrays; Linear matrix inequalities; Matrix decomposition; Mutual coupling; Spectral analysis; Convex optimization; Pisarenko harmonic decomposition; moving average processes; spectral analysis;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2006.874442
Filename :
1673414
Link To Document :
بازگشت